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 The resolution function defines the probability of detecting a 
neutron as function of Q (=q - Q) and  (=' – ) when the 
instrument is set to measure the scattering process at (Q,).

 The scattering profile obtained on a 
neutron scattering experiment is 
defined by the scattering function 
S (Q, ). The intensity observed in ω
a general experiment is related to 
the scattering function by the 
convolution integral
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 Build a virtual copy of the instrument using the samples and 
monitor specialized for the calculation of a resolution 
function: res_sample.comp (for TAS) or 
TOFRes_sample.comp (for a t-o-f instrument) and 
Res_monitor.comp

 Both sample components are inelastic scatterers with 
completely uniform scattering in both solid angle and energy

 The scattered neutrons will have directions towards a given 
target (the analyzer for a TAS or a detector pixel for a direct 
geometry spectrometer).

 The detector stores in a file the individual initial and final 
neutron states, i.e. (k

i
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 Whenever a neutron ray is 
recorded by the detector, the 
scattering event (k
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and the associated neutron 
weight p

j
 (intensity) are 

written to a data file. 

 From this file, the true value of 
the energy and momentum 
transfers can be calculated. 

 Subsequently the resolution 
function may be derived by 
histogramming the individual 
intensities along a set of 
orthogonal Q axes and into 
bins of energy transfer
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The resolution functions for two different instruments have been simulated 
and compared to results from analytical methods.
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The resolution functions for two different instruments have been simulated 
and compared to results from analytical methods.
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Comparison to analytical approaches

The resolution function of a direct geometry chopper spectrometer simulated with the McStas package at a 
scattering angle of 30.14◦ and EI = EF = 48.45 meV. The sample is a hollow cylinder of height 2 cm and 
inner/outer radii of 2.5 mm/5 mm. The blue curves are Gaussian fits to the data, from which the full widths at 
half maximum (fwhm’s) are derived. The detector pixel of size (55 × 105) mm2 (h×v) is at a distance of 4 m 
from the sample. The width of the time bin is 1μs. The black contours are analytical results.
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Comparison to analytical approaches

● The simulated results are compared to analytical results 
from the ResLib package (MATLAB based) and 
calculations by Nicoló Violini and Jörg Voigt.

● The simulated results were in agreement with the results 
obtained with analytical methods

● For the direct geometry Chopper Spectrometer, the 
linewidths in Q agree within 5% and the linewidths in E 
agree within 3%

● For the Triple Axis Spectrometer, the energy- and 
transverse Q-resolution agree within a 2%, whereas the 
parallel and vertical Q-resolution agrees within 20%
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+ CONTRIBUTIONS FROM PATH 

LENGTH UNCERTAINTIES
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EXAMPLE: energy resolution of a direct 
geometry chopper spectrometer

The magnitude of σ
t
 , the standard deviation of the final detected 

time pulse, is estimated by adding in quadrature the time spread 
contributions from the two chopper pairs and

the path length uncertainty σ
L
 ≈ 5 mm. The fwhm energy width is then 

estimated as ∆E = 2.35σ
E
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CONCLUSION

 The McStas simulation package is a useful tool also for the 
simulation of instrument resolution functions

 the simulated results were in agreement with the results 
obtained with analytical methods

 it is now possible to perform detailed Monte Carlo simulation of 
a complex neutron scattering instrument within a tolerable 
time (few seconds –minutes)

 we believe that the use of simulations should be expanded 
from the design phase of an instrument to directly support the 
user community

 The simulation of an instrument resolution function at a 
particular point in (Q, ) space is just one example of ω
simulation-aided decision support

 To be successful, it is of crucial importance that the simulation 
tools are implemented with great care and the virtual 
instrument is maintained as careful as the real instrument
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